Abstract
A Mond–Weir type symmetric dual for a multiobjective variational problem is formulated. Weak and strong duality theorems under generalized convexity assumptions are proved for properly efficient solutions. Under an additional condition on the kernel function that occurs in the formulation of the problems, a self duality theorem is proved. A close relationship between these variational problems and symmetric dual nonlinear multiobjective programming problems is also incorporated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.