Abstract

Divergence-free symmetric tensors seem ubiquitous in Mathematical Physics. We show that this structure occurs in models that are described by the so-called variational principle, where the argument of the Lagrangian is a closed differential form. Divergence-free tensors are nothing but the second form of the Euler--Lagrange equations. The symmetry is associated with the invariance of the Lagrangian density upon the action of some orthogonal group.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.