Abstract

We propose a detailed procedure to determine the two retardance matrix factors entering the symmetric decomposition of Mueller matrices when the depolarizer matrix is partially degenerate (i.e., two out of three of its depolarization coefficients are equal), which is a common occurrence. Thanks to a relatively simple algebraic method, we show that linear retardance, as well as its eigenaxes orientation can be determined unambiguously from each retardance matrix factor. The method, applied on both experimental Mueller matrices of an ad hoc sample, as well as on that of a biological tissue, shows its efficiency for decoupling the different polarimetric effects of retardance that occur during the propagation of light throughout a complex medium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.