Abstract

We present magnetic field dependence of phase transition temperature and vortex configuration of superconducting networks based on theoretical study. The applied magnetic field is called “filling field” that is defined by applied magnetic flux (in unit of the flux quantum) per unit loop of the superconducting network. If a superconducting network is composed of very thin wires whose thicknesses are less than coherence length, the de Gennes–Alexander (dGA) theory is applicable. We have already shown that field dependences of transition temperature curves have symmetric behavior about the filling field of 1/2 by solving the dGA equation numerically in square lattices, honeycomb lattices, cubic lattices and those with randomly lack of wires networks. Many experimental studies also show the symmetric behavior. In this paper, we make an explicit theoretical explanation of symmetric behaviors of superconducting network respect to the applied field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call