Abstract

Hematopoietic stem cells (HSCs) are in an inactive quiescent state for most of their life. To replenish the blood system in homeostasis and after injury, they activate and divide. HSC daughter cells must then decide whether to return to quiescence and metabolic inactivity or to activate further to proliferate and differentiate and replenish lost blood cells. Although the regulation of HSC activation is not well understood, recent discoveries shed new light on involved mechanisms including asymmetric cell division (ACD). HSC metabolism has emerged as a regulator of cell fates. Recent evidence suggests that cellular organelles mediating anabolic and catabolic processes can be asymmetrically inherited during HSC divisions. These include autophagosomes, mitophagosomes, and lysosomes, which regulate HSC quiescence. Their asymmetric inheritance has been linked to future metabolic and translational activity in HSC daughters, showing that ACD can regulate the balance between HSC (in)activity. We discuss recent insights and remaining questions in how HSCs balance activation and quiescence, with a focus on ACD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.