Abstract
Sound-related respiratory symptoms are commonly observed in our daily lives. They are closely related to illnesses, infections, or allergies but ignored by the majority. Existing detection methods either depend on specific devices, which are inconvenient to wear, or are sensitive to noises and only work for indoor environment. Considering the lack of monitoring method for in-car environment, where there is high risk of spreading infectious diseases, we propose a smartphone-based system, named SymListener, to detect respiratory symptoms in driving environment. By continuously recording acoustic data through a built-in microphone, SymListener can detect the sounds of cough, sneeze, and sniffle. We design a modified ABSE-based method to remove the strong and changeable driving noises while saving energy of the smartphone. An LSTM network is adopted to classify the three types of symptoms according to the carefully designed acoustic features. We implement SymListener on different Android devices and evaluate its performance in real driving environment. The evaluation results show that SymListener can reliably detect target respiratory symptoms with an average accuracy of 92.19% and an average precision of 90.91%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.