Abstract
We present lambda_sym, a typed λ-calculus for lenient symbolic execution , where some language constructs do not recognize symbolic values. Its type system, however, ensures safe behavior of all symbolic values in a program. Our calculus extends a base occurrence typing system with symbolic types and mutable state, making it a suitable model for both functional and imperative symbolically executed languages. Naively allowing mutation in this mixed setting introduces soundness issues, however, so we further add concreteness polymorphism , which restores soundness without rejecting too many valid programs. To show that our calculus is a useful model for a real language, we implemented Typed Rosette, a typed extension of the solver-aided Rosette language. We evaluate Typed Rosette by porting a large code base, demonstrating that our type system accommodates a wide variety of symbolically executed programs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.