Abstract

This paper describes a data-driven symbolic regression identification method tailored to power systems and demonstrated on different synchronous generator (SG) models. In this work, we extend the sparse identification of nonlinear dynamics (SINDy) modeling procedure to include the effects of exogenous signals (measurements), nonlinear trigonometric terms in the library of elements, equality, and boundary constraints of expected solution. We show that the resulting framework requires fairly little in terms of data, and is computationally efficient and robust to noise, making it a viable candidate for online identification in response to rapid system changes. The SINDy-based model identification is integrated with the manifold boundary approximation method (MBAM) for the reduction of the differential-algebraic equations (DAE)-based SG dynamic models (decrease in the number of states and parameters). The proposed procedure is illustrated on an SG example in a real-world 441-bus and 67-machine benchmark.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call