Abstract

Several variants of Bryant's ordered binary decision diagrams have been suggested in the literature to reason about discrete functions. In this paper, we introduce a generic notion of weighted decision diagrams that captures many of them and present criteria for canonicity. As a special instance of such weighted diagrams, we introduce a new BDD-variant for real-valued functions, called normalized algebraic decision diagrams. Regarding the number of nodes and arithmetic operations like addition and multiplication, these normalized diagrams are as efficient as factored edge-valued binary decision diagrams, while several other operators, like the calculation of extrema, minimum or maximum of two functions or the switch from real-valued functions to boolean functions through a given threshold, are more efficient for normalized diagrams than for their factored counterpart.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.