Abstract

The introduction of symbolic model checking using Binary Decision Diagrams (BDDs) has led to a substantial extension of the class of systems that can be algorithmically verified. Although BDDs have played a crucial role in this success, they have some well-known drawbacks, such as requiring an externally supplied variable ordering and causing space blowups in certain applications. In a parallel development, SAT-solving procedures, such as Stålmarck’s method or the Davis-Putnam procedure, have been used successfully in verifying very large industrial systems. These efforts have recently attracted the attention of the model checking community resulting in the notion of bounded model checking. In this paper, we show how to adapt standard algorithms for symbolic reachability analysis to work with SAT-solvers. The key element of our contribution is the combination of an algorithm that removes quantifiers over propositional variables and a simple representation that allows reuse of subformulas. The result will in principle allow many existing BDD-based algorithms to work with SAT-solvers. We show that even with our relatively simple techniques it is possible to verify systems that are known to be hard for BDD-based model checkers.KeywordsModel CheckBinary Decision DiagramReachability AnalysisSymbolic Model CheckReachability ProblemThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.