Abstract

Axioms are an extension for classical planning models that allow for modeling complex preconditions and goals exponentially more compactly. Although axioms were introduced in planning more than a decade ago, modern planning techniques rarely support axioms, especially in cost-optimal planning. Symbolic search is a popular and competitive optimal planning technique based on the manipulation of sets of states. In this work, we extend symbolic search algorithms to support axioms natively. We analyze different ways of encoding derived variables and axiom rules to evaluate them in a symbolic representation. We prove that all encodings are sound and complete, and empirically show that the presented approach outperforms the previous state of the art in costoptimal classical planning with axioms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.