Abstract

This paper presents an efficient symbolic-numerical approach for generating and solving the boundary value problem-differential algebraic equation (BVP-DAE) originating from the variational form of the optimal control problem (OCP). This paper presents the method for the symbolic derivation, by means of symbolic manipulation software (Maple), of the equations of the OCP applied to a generic multibody system. The constrained problem is transformed into a nonconstrained problem, by means of the Lagrange multipliers and penalty functions. From the first variation of the nonconstrained problem a BVP-DAE is obtained, and the finite difference discretization yields a nonlinear systems. For the numerical solution of the nonlinear system a damped Newton scheme is used. The sparse and structured Jacobians is quickly inverted by exploiting the sparsity pattern in the solution strategy. The proposed method is implemented in an object oriented fashion, and coded in C++ language. Efficiency is ensured in core routines by using Lapack and Blas for linear algebra.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.