Abstract

Abstract Two straightforward methods for finding solitary-wave and soliton solutions are presented and applied to a variety of nonlinear partial differential equations. The first method is a simplied version of Hirota's method. It is shown to be an effective tool to explicitly construct. multi-soliton solutions of completely integrable evolution equations of fifth-order, including the Kaup-Kupershmidt equation for which the soliton solutions were not previously known. The second technique is the truncated Painleve expansion method or singular manifold method. It is used to find closed-form solitary-wave solutions of the Fitzhugh-Nagumo equation with convection term, and an evolution equation due to Calogero. Since both methods are algorithmic, they can be implemented in the language of any symbolic manipulation program.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.