Abstract
Machine learning models are nowadays ubiquitous in space missions, performing a wide variety of tasks ranging from the prediction of multivariate time series through the detection of specific patterns in the input data. Adopted models are usually deep neural networks or other complex machine learning algorithms providing predictions that are opaque, i.e., human users are not allowed to understand the rationale behind the provided predictions. Several techniques exist in the literature to combine the impressive predictive performance of opaque machine learning models with human-intelligible prediction explanations, as for instance the application of symbolic knowledge extraction procedures. In this paper are reported the results of different knowledge extractors applied to an ensemble predictor capable of reproducing cosmic-ray data gathered on board the LISA Pathfinder space mission. A discussion about the readability/fidelity trade-off of the extracted knowledge is also presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.