Abstract
Symbolic execution is a widely-used program analysis technique. It collects and solves path conditions to guide the program traversing. However, due to the limitation of the current constraint solvers, it is difficult to apply symbolic execution on programs with complex path conditions, like nonlinear constraints and function calls. In this paper, we propose a new symbolic execution tool MLB to handle such problem. Instead of relying on the classical constraint solving, in MLB, the feasibility problems of the path conditions are transformed into optimization problems, by minimizing some dissatisfaction degree. The optimization problems are then handled by the underlying optimization solver through machine learning guided sampling and validation. MLB is implemented on the basis of Symbolic PathFinder and encodes not only the simple linear path conditions, but also nonlinear arithmetic operations, and even black-box function calls of library methods, into symbolic path conditions. Experiment results show that MLB can achieve much better coverage on complex real-world programs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.