Abstract

The bounded dynamics of a system of two coupled piecewise affine and chaotic Lorenz maps is studied over the coupling range, from the uncoupled regime where the entropy is maximal, to the synchronized regime where the entropy is minimal. By formulating the problem in terms of symbolic dynamics, bounds on the set of orbit codes (or the set itself, depending on parameters) are determined which describe the way the dynamics is gradually affected as the coupling increases. Proofs rely on monotonicity properties of bounded orbit coordinates with respect to some partial ordering on the corresponding codes. The estimates are translated in terms of (bounds on the) entropy, which are monotonically decreasing with coupling and which are compared to the numerically computed entropy. A good agreement is found which indicates that these bounds capture the essential features of the transition from the uncoupled regime to synchronisation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.