Abstract

In this article, we propose a general symbolic dynamic modelling framework devoted to Mobile Multibody Systems subject to hard persistent contacts. In particular, all rigid planar and spatial wheeled vehicles belong to this class of systems. To illustrate the approach we apply it to a realistic model of the three dimensional bicycle. Though being a familiar object for everybody, deriving the fully nonlinear dynamics of this system in a closed symbolic form is far from being trivial. Using a Newton-Euler algorithm coupled to a projective approach based on an explicit model of the contacts, the approach is successfully applied to the simulation of a free bicycle. It shows how the passive asymptotic stabilisation of the bicycle can be naturally ensured when it is thrown with sufficient initial velocities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.