Abstract

Under investigation in this paper are the generalized coupled nonlinear Schrödinger equations with cubic–quintic nonlinearity which describe the effects of the quintic nonlinearity on the ultrashort optical soliton pulse propagation in the non-Kerr media. Via the dependent variable transformation and Hirota method, the bilinear form is derived. Based on the bilinear form obtained, the one-, two- and three-soliton solutions are presented in the form of exponential polynomials with the help of symbolic computation. Propagation and interactions of solitons are investigated analytically and graphically. Evolution of one soliton is discussed with the analysis of such physical quantities as the soliton amplitude, width, velocity, initial phase and energy. Interactions of the solitons appear in the forms of the repulsion or attraction alternately and propagation in parallel. Inelastic and head-on interactions of the solitons are also showed. Finally, via the asymptotic analysis, conditions of the elastic and inelastic interactions are obtained.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call