Abstract

Many dynamical systems can be modeled by a set of linear/nonlinear ordinary differential equations with periodic time-varying coefficients. The state transition matrix Φ(t,α) associated with the linear part of the equation can be expressed in terms of the periodic Lyapunov-Floquét transformation matrix Q(t,α) and a time-invariant matrix R(α). Computation of Q(t,α) and R(α) in a symbolic form as a function of system parameters α is of paramount importance in stability, bifurcation analysis, and control system design. In the past, a methodology has been presented for computing Φ(t,α) in a symbolic form, however Q(t,α) and R(α) have never been calculated in a symbolic form. Since Q(t,α) and R(α) were available only in numerical forms, general results for parameter unfolding and control system design could not be obtained in the entire parameter space. In this work a technique for symbolic computation of Q(t,α), and R(α) matrices is presented. First, Φ(t,α) is computed symbolically using the shifted Chebyshev polynomials and Picard iteration method as suggested in the literature. Then R(α) is computed using the Gaussian quadrature integral formula. Finally Q(t,α) is computed using the matrix exponential summation method. Using Mathematica, this approach has successfully been applied to the well-known Mathieu equation and a four dimensional time-periodic system in order to demonstrate the applications of the proposed method to linear as well as nonlinear problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.