Abstract

This paper is concerned with the practical complexity of the symbolic computation of limit cycles associated with Hilbert’s 16th problem. In particular, in determining the number of small-amplitude limit cycles of a non-linear dynamical system, one often faces computing the focus values of Hopf-type critical points and solving lengthy coupled polynomial equations. These computations must be carried out through symbolic computation with the aid of a computer algebra system such as Maple or Mathematica, and thus usually gives rise to very large algebraic expressions. In this paper, efficient computations for the focus values and polynomial equations are discussed, showing how to deal with the complexity in the computation of non-linear dynamical systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.