Abstract

In this article, the novel (G ′/G)-expansion method is successfully applied to construct the abundant travelling wave solutions to the KdV–mKdV equation with the aid of symbolic computation. This equation is one of the most popular equation in soliton physics and appear in many practical scenarios like thermal pulse, wave propagation of bound particle, etc. The method is reliable and useful, and gives more general exact travelling wave solutions than the existing methods. The solutions obtained are in the form of hyperbolic, trigonometric and rational functions including solitary, singular and periodic solutions which have many potential applications in physical science and engineering. Many of these solutions are new and some have already been constructed. Additionally, the constraint conditions, for the existence of the solutions are also listed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.