Abstract

We describe a symbolic procedure for solving the reachability problem of transition systems that use formulae of Effectively Propositional Logic to represent sets of backward reachable states. We discuss the key ideas for the mechanization of the procedure where fix-point checks are reduced to SMT problems. We also show the termination of the procedure on a sub-class of transition systems. Then, we discuss how reachability problems for this sub-class can be used to encode analysis problems of administrative policies in the Role-Based Access Control (RBAC) model that is one of the most widely adopted access control paradigms. An implementation of a refinement of the backward reachability procedure, called asasp, shows better flexibility and scalability than a state-of-the-art tool on a significant set of security problems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call