Abstract

Resultants characterize the existence of roots of systems of multivariate nonlinear polynomial equations, while their matrices reduce the computation of all common zeros to a problem in linear algebra. Sparse elimination theory has introduced the sparse (or toric) resultant, which takes into account the sparse structure of the polynomials. The construction of sparse resultant, or Newton, matrices is the critical step in the computation of the multivariate resultant and the solution of a nonlinear system. We reveal and exploit the quasi-Toeplitz structure of the Newton matrix, thus decreasing the time complexity of constructing such matrices by roughly one order of magnitude to achieve quasi-quadratic complexity in the matrix dimension. The space complexity is also decreased analogously. These results imply similar improvements in the complexity of computing the resultant polynomial itself and of solving zero-dimensional systems. Our approach relies on fast vector-by-matrix multiplication and uses the following two methods as building blocks. First, a fast and numerically stable method for determining the rank of rectangular matrices, which works exclusively over floating point arithmetic. Second, exact polynomial arithmetic algorithms that improve upon the complexity of polynomial multiplication under our model of sparseness, offering bounds linear in the number of variables and the number of non-zero terms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.