Abstract
We analyzed base parameters for closed-loop robots using robot symbolic analysis based on the completion procedure in polynomial ideal theory. The robot dynamics regressor is represented as a matrix of multivariate polynomials and reduced to normal form based on Buchberger's algorithm by constructing reduced Grobner basis from kinematic constrained equations. The linear independence of the reduced regressor's column vectors is studied by Gauss-Jordan elimination. Original dynamic parameters are regrouped and some eliminated, depending on results. This omits the need to solve kinematic constrained equations explicitly, deriving all base parameters systematically in theory. An example is shown using robot symbolic analysis system: ROSAM 11.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.