Abstract

The backstepping control design algorithms described by Krstic et al. (1995) provide a systematic framework for the design of regulating strategies suitable for large classes of nonlinear uncertain systems. However, the equations arising at the successive steps are usually too complicated to be computed by hand. We consider here a symbolic toolbox which implements a general algorithm for the design of dynamic adaptive controllers following the basic ideas of backstepping with tuning functions without transformation into canonical forms. This algorithm is applicable to observable minimum phase systems not necessarily in triangular form and also to uncertain nonlinear systems in triangular forms. Additionally the control can be generated by a sliding mode approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.