Abstract
This paper provides a framework for analyzing and comparing timing recovery schemes for higher order partial response (PR) channels. Several classes of timing recovery schemes are analyzed. Timing recovery loops employing timing gradients or phase detectors derived from the minimum mean-square error (MMSE) criterion, the maximum likelihood (ML) criterion, and the timing function approach of Mueller and Muller (1976) (MRI) are analyzed and compared. The paper formulates and analyzes MMSE timing recovery in the context of a slope look-up table (SLT), which is amenable for an efficient implementation. The properties and performance of the SLT-based timing loop are compared with the ML and MM loops. Analysis and time step simulations for a practical 16-state PR magnetic recording channel show that the output noise jitter of the ML phase detector is worse than that of the SLT-based phase detector. This is primarily due to the presence of self-noise in the ML detector. Consequently, the SLT-based phase detector is to be preferred. In comparing the SLT and MM based timing loops, it is found that both schemes have similar jitter performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.