Abstract

We study the formation of spin-1 symbiotic spinor solitons in a quasi-one- (quasi-1D) and quasi-two-dimensional (quasi-2D) hyperfine spin F=1 ferromagnetic Bose-Einstein condensate (BEC). The symbiotic solitons necessarily have a repulsive intraspecies interaction and are bound due to an attractive interspecies interaction. Due to a collapse instability in higher dimensions, an additional spin-orbit coupling is necessary to stabilize a quasi-2D symbiotic spinor soliton. Although a quasi-1D symbiotic soliton has a simple Gaussian-type density distribution, novel spatial periodic structure in density is found in quasi-2D symbiotic SO-coupled spinor solitons. For a weak SO coupling, the quasi-2D solitons are of the (-1,0,+1) or (+1,0,-1) type with intrinsic vorticity and multiring structure, for Rashba or Dresselhaus SO coupling, respectively, where the numbers in the parentheses are angular momenta projections in spin components F_{z}=+1,0,-1, respectively. For a strong SO coupling, stripe and superlattice solitons, respectively, with a stripe and square-lattice modulation in density, are found in addition to the multiring solitons. The stationary states were obtained by imaginary-time propagation of a mean-field model; dynamical stability of the solitons was established by real-time propagation over a long period of time. The possibility of the creation of such a soliton by removing the trap of a confined spin-1 BEC in a laboratory is also demonstrated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call