Abstract

Ambient backscatter communication (AmBC) technology can potentially offer spectral- and energy-efficient solutions for future wireless systems. This paper proposes a novel design to facilitate the spectrum sharing between a secondary system and a primary system based on the AmBC technique in intelligent reflective surface (IRS)-assisted unmanned aerial vehicle (UAV) networks. In particular, an IRS-aided UAV cooperatively relays the transmission from a terrestrial primary source node to a user equipment on the ground. On the other hand, leveraging on the AmBC technology, a terrestrial secondary node transmits its information to a terrestrial secondary receiver by modulating and backscattering the ambient relayed radio frequency (RF) signals from the UAV-IRS. The performance of such a system setup is analyzed by deriving the expressions of outage probability and ergodic spectral efficiency. Finally, we present the numerical results to provide useful insights into the system design and also validate the derived theoretical results using Monte Carlo simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.