Abstract
Determination of optimum thresholds is the prime concern of any multilevel image thresholding technique. The traditional methods for multilevel thresholding are computationally expensive, time-consuming, and also suffer from lack of accuracy and stability. To address this issue, the authors propose a new methodology for multilevel image thresholding based on a recently developed meta-heuristic algorithm, Symbiotic Organisms Search (SOS). The SOS algorithm has been inspired by the symbiotic relationship among the organism in nature. This article has utilized the concept of the symbiotic relationship among the organisms to optimize three objective functions: Otsu's between class variance and Kapur's and Tsallis entropy for image segmentation. The performance of the SOS based image segmentation algorithm has been evaluated using a set of benchmark images and has been compared with four recent meta-heuristic algorithms. The algorithms are compared in terms of effectiveness and consistency. The quality of the algorithms has been estimated by some well-defined quality metrics such as peak signal-to-noise ratio (PSNR), structure similarity index (SSIM), and, feature similarity index (FSIM). The experimental results of the algorithms reveal that the balance of intensification and diversification of the SOS algorithm to achieve the global optima is better than others.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Swarm Intelligence Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.