Abstract

Accelerating anthropogenic climate change threatens to destroy coral reefs worldwide through the processes of bleaching and disease. These major contributors to coral mortality are both closely linked with thermal stress intensified by anthropogenic climate change. Disease outbreaks typically follow bleaching events, but a direct positive linkage between bleaching and disease has been debated. By tracking 152 individual coral ramets through the 2014 mass bleaching in a South Florida coral restoration nursery, we revealed a highly significant negative correlation between bleaching and disease in the Caribbean staghorn coral, Acropora cervicornis. To explain these results, we propose a mechanism for transient immunological protection through coral bleaching: removal of Symbiodinium during bleaching may also temporarily eliminate suppressive symbiont modulation of host immunological function. We contextualize this hypothesis within an ecological perspective in order to generate testable predictions for future investigation.

Highlights

  • Anthropogenic climate change threatens to destroy coral reefs globally before the end of the century (Hoegh-Guldberg et al, 2007; Hoegh-Guldberg, 2014)

  • Coral bleaching represents the breakdown of the obligate mutualism between dinoflagellates of the genus Symbiodinium and reef building corals

  • The strong El Niño Southern Oscillation (ENSO) event that occurred in 2014 triggered mass coral bleaching events and subsequent disease outbreaks in the Greater Caribbean and the Florida Reef Tract (Manzello, 2015; Precht et al, 2016; Lewis et al, 2017)

Read more

Summary

Introduction

Anthropogenic climate change threatens to destroy coral reefs globally before the end of the century (Hoegh-Guldberg et al, 2007; Hoegh-Guldberg, 2014). Coral bleaching represents the breakdown of the obligate mutualism between dinoflagellates of the genus Symbiodinium and reef building corals. This breakdown results in decreased coral growth, fecundity, and survivorship, as the loss of photosynthetic Symbiodinium deprives corals of up to 95% of their energetic budget (Muscatine & Porter, 1977; Glynn, 1983; Harriott, 1985; Goreau & Macfarlane , 1990; Szmant & Gassman, 1990; Baird & Marshall, 2002). Coral tissue loss diseases (as opposed to diseases resultant in discoloration or abnormal growth form) are the focus of this study

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.