Abstract

As cells grow and divide under a given environment, they become crowded and resources are limited, as seen in bacterial biofilms and multicellular aggregates. These cells often show strong interactions through exchanging chemicals, as evident in quorum sensing, to achieve mutualism and division of labor. Here, to achieve stable division of labor, three characteristics are required. First, isogenous cells differentiate into several types. Second, this aggregate of distinct cell types shows better growth than that of isolated cells without interaction and differentiation, by achieving division of labor. Third, this cell aggregate is robust with respect to the number distribution of differentiated cell types. Indeed, theoretical studies have thus far considered how such cooperation is achieved when the ability of cell differentiation is presumed. Here, we address how cells acquire the ability of cell differentiation and division of labor simultaneously, which is also connected with the robustness of a cell society. For this purpose, we developed a dynamical-systems model of cells consisting of chemical components with intracellular catalytic reaction dynamics. The reactions convert external nutrients into internal components for cellular growth, and the divided cells interact through chemical diffusion. We found that cells sharing an identical catalytic network spontaneously differentiate via induction from cell-cell interactions, and then achieve division of labor, enabling a higher growth rate than that in the unicellular case. This symbiotic differentiation emerged for a class of reaction networks under the condition of nutrient limitation and strong cell-cell interactions. Then, robustness in the cell type distribution was achieved, while instability of collective growth could emerge even among the cooperative cells when the internal reserves of products were dominant. The present mechanism is simple and general as a natural consequence of interacting cells with limited resources, and is consistent with the observed behaviors and forms of several aggregates of unicellular organisms.

Highlights

  • As unicellular organisms grow and divide, they often form a crowded aggregate

  • Cells in an aggregate have to differentiate into several types that are specialized for different tasks, so that the growth rate should be enhanced by the division of labor among these cell types

  • To consider how a cell aggregate can acquire these properties, most theoretical studies have far assumed the fitness of an aggregate of cells and the ability of cell differentiation a priori

Read more

Summary

Introduction

As exemplified by bacterial biofilms [1,2,3] and slime molds [4, 5], these aggregates are not merely crowded passively, but sometimes form a functional cell aggregate, in which cells strongly interact with each other by exchanging chemicals, as demonstrated with quorum sensing [6] Such a “multicellular aggregate” is often observed to form under a limited resource condition, which may indicate that formation of an aggregate is a universal strategy for a unicellular organism to survive in a severe environment and for cells to grow collectively and cooperatively. This raises the questions of how aggregates of identical cells achieve division of labor for cooperative growth, and what are the necessary conditions? These questions are important to be addressed in order to understand the formation of multicellular aggregates, including the formation of biofilms, which has attracted much attention recently [1,2,3].

Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.