Abstract

Symbiosis naturally provides an opportunity for microorganisms to live together by mutual or one-way benefit. In symbiotic relationships, the microorganisms usually overcome the limitations of being free-living. Understanding the symbiotic relationships of oleaginous microorganisms provides potential route for the sustainable production of microbial-based alternative fuels. So far, several studies have been conducted in oleaginous microorganisms for the production of alternative fuels. However, some oleaginous microorganisms require high quantity of nutrients for their growth, and high level of energy and chemicals for harvest and separation of lipid bodies. Symbiotic associations can successfully be applied to address these issues. Of symbiotic associations, lichens and selective species of oleaginous endosymbiotic mucoromycotina have received substantial interest as better models to study the evolutionary relationships as well as single-cell oil production. Construction of artificial lichen system composed of cyanobacteria and oleaginous yeast has been achieved for sustainable production of lipids with minimum energy demand. Recently, endosymbiotic mucoromycotina species have been recognized as potential sources for biofuels. Studies found that endohyphal bacterium influences lipid profiling in endosymbiotic mucoromycotina species. Studies on the genetic factors related to oleaginous characteristics of endosymbiotic mucoromycotina species are scarce. In this regard, this review summarizes the different forms of symbiotic associations of oleaginous microorganisms and how symbiotic relationships are impacting the lipid formation in microorganisms. Further, the review also highlights the importance of evolutionary relationships and benefits of co-culturing (artificial symbiosis) approaches for sustainable production of biofuels.

Highlights

  • The evolution and beauty of symbiotic associations can be explained by studying the lichens

  • Oleaginous microorganisms are considered as single-cell oil producers capable of producing more than 20–25% lipid in their dry cell weight; exceptionally, it can accumulate up to 60% in some cases (Table 1)

  • Studies on mutual associations between oleaginous microorganisms can help improve their role in oil production

Read more

Summary

Introduction

The evolution and beauty of symbiotic associations can be explained by studying the lichens. Apart from thraustochytrids, the manglicolous oleaginous fungi and yeast have been reported to utilize carboxymethyl cellulose, dextrose, lignocelluloses, and xylose as sole carbon sources and produce high level of intracellular fatty acids (Khot et al, 2012; Thatoi et al, 2013). The lipid bodies of mangrove inhabited oleaginous fungi and yeast were mainly composted of saturated and monounsaturated fatty acids including PA-C16, SA-C18:0, and OA-C18:1 (Khot et al, 2012; Thatoi et al, 2013).

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.