Abstract

The effects of the symbiosis of sulfate-reducing bacteria (SRB) and total general bacteria (TGB) on the microbiologically influenced corrosion (MIC) of carbon steel were investigated in this research. The SRB was the main corrosive bacterium, and TGB induced slightly general MIC. The symbiosis of SRB and TGB induced more severe MIC and pitting corrosion than SRB. The main corrosion products were FeS, Fe2O3, and FeOOH. The presence of TGB facilitates MIC and pitting corrosion by providing a locally anaerobic shelter for SRB. An MIC mechanism of the symbiosis of SRB and TGB was proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.