Abstract

In response to environmental change, the cyanobacterium Nostoc punctiforme ATCC 29133 produces highly adapted filaments known as hormogonia that have gliding motility and serve as the agents of infection in symbioses with plants. Hormogonia sense and respond to unidentified plant-derived chemical signals that attract and guide them towards the symbiotic tissues of the host. There is increasing evidence to suggest that their interaction with host plants is regulated by chemotaxis-related signal transduction systems. The genome of N. punctiforme contains multiple sets of chemotaxis (che)-like genes. In this study we characterize the large che5 locus of N. punctiforme. Disruption of NpR0248, which encodes a putative CheR methyltransferase, results in loss of motility and significantly impairs symbiotic competency with the liverwort Blasia pusilla when compared with the parent strain. Our results suggest that chemotaxis-like elements regulate hormogonia function and hence symbiotic competency in this system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.