Abstract

Elevated temperatures and nutrients are degrading coral reef ecosystems, but the understanding of how early life stages of reef corals respond to these stressors remains limited. Here, we test the impact of temperature (mean ~ 27 °C vs. ~ 29 °C) and nitrate and phosphate enrichment (ambient, + 5 µM nitrate, + 1 µM phosphate and combined + 5 µM nitrate with 1 µM phosphate) on coral larvae using three Hawaiian coral species with different modes of symbiont transmission and reproduction: Lobactis scutaria (horizontal, gonochoric broadcast spawner), Pocillopora acuta (vertical, hermaphroditic brooder) and Montipora capitata (vertical, hermaphroditic broadcast spawner). Temperature and nutrient effects were species specific and appear antagonistic for L. scutaria and M. capitata, but not for P. acuta. Larvae survivorship in all species was lowest under nitrate enrichment at 27 °C. M. capitata and L. scutaria survivorship increased at 29 °C. However, positive effects of warming on survivorship were lost under high nitrate, but phosphate attenuated nitrate effects when N/P ratios were balanced. P. acuta larvae exhibited high survivorship (> 91%) in all treatments and showed little change in larval size, but lower respiration rates at 29 °C. Elevated nutrients (+N+P) led to the greatest loss in larvae size for aposymbiotic L. scutaria, while positive growth in symbiotic M. capitata larvae was reduced under warming and highest in +N+P treatments. Overall, we report a greater sensitivity of broadcast spawners to warming and nutrient changes compared to a brooding coral species. These results suggest variability in biological responses to warming and nutrient enrichment is influenced by life-history traits, including the presence of symbionts (vertical transmission), in addition to nutrient type and nutrient stoichiometry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.