Abstract

The ability of an insect to survive attack by natural enemies can be modulated by the presence of defensive symbionts. Study of aphid–symbiont–enemy interactions has indicated that protection may depend on the interplay of symbiont, host and attacking parasite genotypes. However, the importance of these interactions is poorly understood outside of this model system. Here, we study interactions within a Drosophila model system, in which Spiroplasma protect their host against parasitoid wasps and nematodes. We examine whether the strength of protection conferred by Spiroplasma to its host, Drosophila melanogaster varies with strain of attacking Leptopilina heterotoma wasp. We perform this analysis in the presence and absence of ethanol, an environmental factor that also impacts the outcome of parasitism. We observed that Spiroplasma killed all strains of wasp. However, the protection produced by Spiroplasma following wasp attack depended on wasp strain. A composite measure of protection, including both the chance of the fly surviving attack and the relative fecundity/fertility of the survivors, varied from a <4% positive effect of the symbiont following attack of the fly host by the Lh14 strain of wasp to 21% for the Lh-Fr strain in the absence of ethanol. We also observed that environmental ethanol altered the pattern of protection against wasp strains. These data indicate that the dynamics of the Spiroplasma–Drosophila–wasp tripartite interaction depend upon the genetic diversity within the attacking wasp population, and that prediction of symbiont dynamics in natural systems will thus require analysis across natural enemy genotypes and levels of environmental ethanol.

Highlights

  • All organisms face a threat from natural enemies and, in response, are typically able to defend themselves through a variety of protective mechanisms

  • To determine whether the differences in fly survival were due to differences in wasp oviposition behaviour, we compared the number of wasp eggs and larvae per fly larva among the three wasp strains (Lh-Fr, Lh14 and Lh-Mad)

  • We determined whether wasp oviposition differed between Spiroplasma positive and negative fly larvae

Read more

Summary

Introduction

All organisms face a threat from natural enemies and, in response, are typically able to defend themselves through a variety of protective mechanisms.

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.