Abstract

The evolution of intracellular symbioses formed by bacteria with plants and animals is addressed as a model for reconstructing the origin of eukaryotic cells as a symbiosis between different forms of prokaryotes (symbiogenesis). In microorganisms that are in facultative or conditionally obligatory (ecologically obligatory) dependence on symbiosis, their gene networks arise on the basis of host-activated intragenomic rearrangements and horizontal gene transfer. The latter factor determines the evolution of the genomes of symbiotic bacteria as open genetic systems (OGSs), in which the ratio of accessory genome regions to its core regions is increased compared to free-living relatives. Coevolution of bacteria and eukaryotic hosts results in the formation of higher rank OGSs, symbiogenomes, the integrity of which is mediated by signaling interactions that determine cross-regulation of partner genes. Increasing the effectiveness of their cooperation is achieved with the transition of bacteria to strictly obligatory (genetically obligatory) dependence on hosts, determined by (a) the loss of considerable regions of the microbial genome encoding the functions of autonomous development and (b) adaptation of bacteria to permanent intracellular existence, endocytobiosis. At this stage, symbiogenomes acquire the status of inheritance systems, determined by vertical (as a rule, transovarial) transfer of microsymbionts through host generations. The transformation of endocytobionts into cellular organelles is associated with the loss of their genetic autonomy, i.e., the ability to maintain and express their rudimentary genomes, until their complete loss. However, organelles partially retain phenotypic identity of ancestral bacteria, which is determined by the importation from the host cell of the gene products (proteins, RNA) obtained earlier from microsymbionts, which led to the formation of structurally integrated hologenomes. The gene loss and gain strategy realized in this way led to the formation of different patterns of eukaryotic cell organization in accordance with the mosaic scenario, which includes sequential introduction of several symbionts into the host cell, or with the matryoshka doll scenario, in which new symbionts are introduced into the cells of previously acquired symbionts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.