Abstract
We study the connection between products of Sylow subgroups of a finite group G and the solvable residual of G. Let Π(𝒫) be a product of Sylow subgroups of G such that each prime divisor of |G| is represented exactly once in Π(𝒫). We prove that there exists a unique normal subgroup N of G which is minimal subject to the requirement Π(𝒫) N = G. Furthermore, N is perfect, and the product of all of these subgroups is the solvable residual of G. We also prove that the solvable residual of G is generated by all elements which arise from non-trivial factorizations of 1 G in such products of Sylow subgroups.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.