Abstract

Crowdsensing leverages the rapid growth of sensor-embedded smartphones and human mobility for pervasive information collection. To incentivize smartphone users to participate in crowdsensing, many auction-based incentive mechanisms have been proposed for both offline and online scenarios. It has been demonstrated that the Sybil attack may undermine these mechanisms. In a Sybil attack, a user illegitimately pretends multiple identities to gain benefits. Sybil-proof incentive mechanisms have been proposed for the offline scenario. However, the problem of designing Sybil-proof online incentive mechanisms for crowdsensing is still open. Compared to the offline scenario, the online scenario provides users one more dimension of flexibility, i.e., active time, to conduct Sybil attacks, which makes this problem more challenging. In this paper, we design Sybil-proof online incentive mechanisms to deter the Sybil attack for crowdsensing. Depending on users' flexibility on performing their tasks, we investigate both single-minded and multi-minded cases and propose SOS and SOM, respectively. SOS achieves computational efficiency, individual rationality, truthfulness, and Sybil-proofness. SOM achieves individual rationality, truthfulness, and Sybil-proofness. Through extensive simulations, we evaluate the performance of SOS and SOM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.