Abstract

The timely and effective detection of forest fires is crucial for environmental and socio-economic protection. Existing deep learning models struggle to balance accuracy and a lightweight design. We introduce SWVR, a new lightweight deep learning algorithm. Utilizing the Reparameterization Vision Transformer (RepViT) and Simple Parameter-Free Attention Module (SimAM), SWVR efficiently extracts fire-related features with reduced computational complexity. It features a bi-directional fusion network combining top-down and bottom-up approaches, incorporates lightweight Ghost Shuffle Convolution (GSConv), and uses the Wise Intersection over Union (WIoU) loss function. SWVR achieves 79.6% accuracy in detecting forest fires, which is a 5.9% improvement over the baseline, and operates at 42.7 frames per second. It also reduces the model parameters by 11.8% and the computational cost by 36.5%. Our results demonstrate SWVR’s effectiveness in achieving high accuracy with fewer computational resources, offering practical value for forest fire detection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call