Abstract

Timely and reliably detecting a close-quarters situation at sea is vital to the safety of navigation. With the development of Maritime Autonomous Surface Ships (MASS), successful collision avoidance will depend to a lesser extent on humans, but rather on computers and implemented algorithms. However, the risk of collision is nowadays evaluated by humans, based on their experience, training, within a context of relevant collision regulations, adopting various safety indicators, being often subjective. The latter include: Bow Crossing Range (BCR) and Closest Point of Approach (CPA) - commonly used in seagoing practice - and recently proposed Last Time to Take Action (LTTA) or Minimum Distance To Collision (MDTC). However, for the indicators to be applicable for MASS ensuring its safe and efficient navigation, the following generic SMART requirements appropriate for leading safety indicators shall be met: Specific, Measurable, Attainable, Relevant, and Time-based. This study aims to define and analyse a set of SMART-type leading safety indicators suitable for MASS, along with their feasibility, benefits, and disadvantages, as well as reference values. To this end a comprehensive literature study has been performed, including scientific literature, as well as reports, working papers, government documents, white papers and evaluations. Finally, the obtained findings are collated using SWOT analysis and the results are formulated. These can allow for a better managerial insight into the subject of MASS collision avoidance and safety of navigation in general.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.