Abstract
Since the discovery of single-walled carbon nanotubes (SWNTs) in the early 1990s, the most commonly accepted model of SWNT growth on traditional catalysts (i.e., transition metals including Fe, Co, Ni, etc.) is the vapor-liquid-solid (VLS) mechanism. In more recent years, the synthesis of SWNTs on nontraditional catalysts, such as SiO(2), has also been reported. The precise atomistic mechanism explaining SWNT growth on nontraditional catalysts, however, remains unknown. In this work, CH(4) chemical vapor deposition (CVD) and single-walled carbon nanotube (SWNT) nucleation on SiO(2) nanoparticles have been investigated using quantum-chemical molecular dynamics (QM/MD) methods. Upon supply of CH(x) species to the surface of a model SiO(2) nanoparticle, CO was produced as the main chemical product of the CH(4) CVD process, in agreement with a recent experimental investigation [Bachmatiuk et al., ACS Nano 2009, 3, 4098]. The production of CO occurred simultaneously with the carbothermal reduction of the SiO(2) nanoparticle. However, this reduction, and the formation of amorphous SiC, was restricted to the nanoparticle surface, with the core of the SiO(2) nanoparticle remaining oxygen-rich. In cases of high carbon concentration, SWNT nucleation then followed, and was driven by the formation of isolated sp(2)-carbon networks via the gradual coalescence of adjacent polyyne chains. These simulations indicate that the carbon saturation of the SiO(2) surface was a necessary prerequisite for SWNT nucleation. These simulations also indicate that a vapor-solid-solid mechanism, rather than a VLS mechanism, is responsible for SWNT nucleation on SiO(2). Fundamental differences between SWNT nucleation on nontraditional and traditional catalysts are therefore observed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.