Abstract

Online-transaction-processing (OLTP) applications require the underlying storage system to guarantee consistency and serializability for distributed transactions involving large numbers of servers, which tends to introduce high coordination cost and cause low system performance. In-network coordination is a promising approach to alleviate this problem, which leverages programmable switches to move a piece of coordination functionality into the network. This paper presents a fast and scalable transaction processing system called SwitchTx. At the core of SwitchTx is a decentralized multi-switch in-network coordination mechanism, which leverages modern switches' programmability to reduce coordination cost while avoiding the central-switch-caused problems in the state-of-the-art Eris transaction processing system. SwitchTx abstracts various coordination tasks (e.g., locking, validating, and replicating) as in-switch gather-and-scatter (GaS) operations, and offloads coordination to a tree of switches for each transaction (instead of to a central switch for all transactions) where the client and the participants connect to the leaves. Moreover, to control the transaction traffic intelligently, SwitchTx reorders the coordination messages according to their semantics and redesigns the congestion control combined with admission control. Evaluation shows that SwitchTx outperforms current transaction processing systems in various workloads by up to 2.16X in throughput, 40.4% in latency, and 41.5% in lock time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call