Abstract

The coupling of electron and proton transfer is an important controlling factor in radical proteins, such as photosystem II, ribinucleotide reductase, cytochrome oxidases, and DNA photolyase. This was investigated in model complexes in which a tyrosine or tryptophan residue was oxidized by a laser-flash generated trisbipyridine-Ru(III) moiety in an intramolecular, proton-coupled electron transfer (PCET) reaction. The PCET was found to proceed in a competition between a stepwise reaction, in which electron transfer is followed by deprotonation of the amino acid radical (ETPT), and a concerted reaction, in which both the electron and proton are transferred in a single reaction step (CEP). Moreover, we found that we could analyze the kinetic data for PCET by Marcus' theory for electron transfer. By altering the solution pH, the strength of the Ru(III) oxidant, or the identity of the amino acid, we could induce a switch between the two mechanisms and obtain quantitative data for the parameters that control which one will dominate. The characteristic pH-dependence of the CEP rate (M. Sjodin et al. J. Am. Chem. Soc. 2000, 122, 3932) reflects the pH-dependence of the driving force caused by proton release to the bulk. For the pH-independent ETPT on the other hand, the driving force of the rate-determining ET step is pH-independent and smaller. On the other hand, temperature-dependent data showed that the reorganization energy was higher for CEP, while the pre-exponential factors showed no significant difference between the mechanisms. Thus, the opposing effect of the differences in driving force and reorganization energy determines which of the mechanisms will dominate. Our results show that a concerted mechanism is in general quite likely and provides a low-barrier reaction pathway for weakly exoergonic reactions. In addition, the kinetic isotope effect was much higher for CEP (kH/kD > 10) than for ETPT (kH/kD = 2), consistent with significant changes along the proton reaction coordinate in the rate-determining step of CEP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.