Abstract

In mature trees of Picea abies, Fagus sylvatica and Quercus robur, photosynthesis and transpiration were assessed in response to the total solar eclipse that occurred in Central Europe during the late morning hours of August 11, 1999, a day with changing cloudiness. Measurements were conducted at three forest sites located in the totality zone and the 99% area of the eclipse within a radius of about 100 km around the city of Munich (southern Germany). The eclipse lasting 164 minutes lowered the photosynthetic photon flux density (PPFD) to about 1 μmol m -2 s -1 during the 2-minute totality period, when the sky was clear. During totality, photosynthesis was reduced to an extent that allowed CO 2 release to dominate the gas exchange of leaves. Effects on transpiration were less pronounced as the totality was apparently too short to induce distinct stomatal closure in response to low PPFD. Transpiration was strongly reduced, however, by increased air humidity and wet leaf surfaces during sporadic rain showers which preceded or succeeded the eclipse during the same day, whereas low PPFD through intermittent cloudiness during rain only moderately reduced photosynthesis. Although transpiration was lowered to a minor extent only by the eclipse, the latter affected the water transport through the whole tree, as reflected in a decline in the sap flow rate through the basal stem part with a time delay depending on the species. Nevertheless, trees responded in a synchronous way, regardless of the site, species or the percent degree of the eclipse.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.