Abstract

Abstract Electrodialytic (ED) transport of carboxylic acids from their ternary mixtures (acetic, malic and citric) of different compositions were investigated through anion exchange membrane (AEM). Solution pH played crucial role in selectivity and ion transport (expressed by limiting current density, LCD). These observations were analysed based on flow hydrodynamics, ion specific properties and ionic interaction with AEM influencing water uptake and membrane resistance. Fractional hydrolysis of weak acids generated complex mixture of multiple anions of varying charges which strongly influenced LCD. Theoretically estimated LCD (from effective diffusivity, Deff and Sh number based effective mass transfer coefficient, keff) could closely match experimental LCD (±4–8% deviation). The nature of solute species, concentration and their interaction with AEM strongly influenced ion transport. Estimation of Deff, transport number, ion exchange equilibrium and membrane resistance could satisfactorily explain the observed LCD. At low pH, LCD was proportional to available free ions while, at pH > 5.2 component specific properties/interactions dominated. Water uptake indicated variation in micro-structure and ion selectivity with different compositions of ternary mixture. This was attributed to shrinkage/swelling of membrane due to ion-membrane interactions. Stronger hydrophobic interaction of acetic acid caused shrinkage of micro-structure resulted in low water uptake but got reversed at higher pH.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.