Abstract

Modular multilevel converters (MMCs) are widely used in different applications such as high voltage direct current (HVDC) applications. The HVDC station loss is highly related to the converter switching pulse pattern which is generated by modulation algorithm and cell selection methods. This paper formulates the switching pulse pattern generation, as a versatile optimisation problem. The problem constraints and objectives are formulated for HVDC applications and compared with similar problems in the field of computer science. To overcome the computational complexity in solving the introduced optimisation problem, a heuristic method is proposed for cell selection algorithm. The method utilizes the current level in order to obtain lossless switching at zero-current crossings. The study of the proposed method, in a time-domain simulation platform, shows that the method can reduce the switching converter losses by 60% compared to carrier-based modulation, maintaining the same capacitor voltage ripple. Although this paper focuses on HVDC, the mathematical model is applicable for any MMC application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.