Abstract

A nitrospiropyran, which was modified with a cadaverine-derived anchor, was investigated with respect to its thermally induced isomerizations, hydrolytic stability of the merocyanine form, and photochromic ring closure. The host-guest complexation of the anchor by the cucurbit[7]uril macrocycle, evidenced by absorption titration, NMR spectroscopy, and electrospray ionization mass spectrometry, produced significant improvements of the switching properties of the photochrome: 1) appearance of the merocyanine form about 70 times faster, 2) practically unlimited hydrolytic stability of the merocyanine (two and a half days without any measureable decay), and 3) fast, clean, and fatigue-resistant photoinduced ring closure back to the spiro form. The importance of an adequate molecular design of the anchor was demonstrated by including control experiments with spiropyrans with a shorter linker or without such structural asset.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.