Abstract

An organic field-effect transistor was fabricated using an anthracene–tetracyanoquinodimethane (AN–TCNQ) single-crystal charge-transfer (CT) complex as the semiconductor material. The CT complex showed molecular dynamics related to reorientational motion of an AN molecule at room temperature. The transfer characteristics drastically changed when the temperature decreased from room temperature to 90 K: n-type → ambipolar-type → p-type → ambipolar-type. From thermal analysis, AN–TCNQ underwent two phase transitions when the temperature decreased from room temperature to 120 K. To clarify the mechanism of the drastic changes of the transfer characteristics, the crystal and electronic structures of AN–TCNQ at various temperatures were investigated by X-ray structure analysis, optical measurements, and magnetic measurements. It was found that the drastic changes of the transfer characteristics originated from changes in the electronic structure accompanied by the molecular dynamics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call