Abstract

Double-decker complexes based on single-molecule magnets (SMMs) are a class of highly promising molecules for applications in molecular spintronics, wherein control of both the ligand oxidative states and the 2D supramolecular structure on carbon materials is of great importance. This study focuses on the synthesis and study of 2,3,7,8,12,13,17,18-octaethylporphyrin (OEP)-Tb(III) double-decker complexes with different electronic structures comprising protonated, anionic, and radical forms. Magnetic susceptibility measurements revealed that only the anionic and radical forms of the OEP-Tb(III) double-decker complexes exhibited SMM properties. The barrier heights for magnetic moment reversal were estimated to be 207 and 215 cm(-1) for the anionic and radical forms, respectively. Scanning tunneling microscopy (STM) investigations revealed that these OEP-Tb(III) complexes form well-ordered monolayers upon simple dropcasting from dilute dichloromethane solutions. All three complexes form an isomorphic pseudo-hexagonal 2D pattern, regardless of the differences in the electronic structures of their porphyrin-Tb cores. This finding is of interest for SMM technology as ultrathin films of these materials undergoing chemical transformations will not require any detrimental reorganization. Finally, we demonstrate self-assembly of the protonated 5,15-bisdodecylporphyrin (BDP)-Tb(III) double-decker complex as an example of successful supramolecular design to achieve controlled alignment of SMM-active sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.